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The cross sections for elastic scattering of high-energy electrons on He3 and H3 are calculated. The nuclear 
ground-state wave functions are assumed to consist of a dominant fully symmetric 5 state with either Gaus­
sian or exponential space dependence and a small component of D state. We include also estimates of effects 
of relativisitic terms in the nuclear current, and effects of the exchange currents. The results are compared 
with the experimental data of Hofstadter, Collard, and Yearian. We can fit these data to within their experi­
mental limits for both He3 and H3. The best fits are not obtained by choosing the same wave parameters for 
both nuclei. 

RECENT measurements1 of elastic electron scatter­
ing from He3 and H3 have yielded information 

about their electric and magnetic form factors at mo­
mentum transfers up to | q2| = 5 F~2. In particular, they 
show in He3 a magnetic moment form factor appreciably 
larger than its charge form factor; i.e., the distribution 
of magnetic moment is more compact than that of 
charge, with rms radii 1.69 and 1.97 F, respectively. 
The two form factors of H3, on the other hand, appear to 
be approximately equal, and furthermore equal to the 
He3 moment factor. 

One would expect, from the simplest model of H3 and 
He3, to find the electric and magnetic form factors 
approximately equal. If all particles are in 5 states, the 
magnetic moment resides entirely in the spin of the odd 
particle. Neglecting Coulomb effects, the neutron and 
proton wave functions are equal and, aside from nucleon 
finite size corrections, this leads to equality of the 
charge and moment density distributions. However, 
these finite size effects are not negligible and lead to 
/?chg

H3>^chgHe3.2 I t is known also that the nucleon-
nucleon tensor force admixes into the ground-state wave 
function an appreciable D-state component. Now F&g 
has only S2 and D2 terms; Fmag has a SD interference 
term which may lead to F m a g >F c h g , in qualitative agree­
ment with the experimental results. One would hope 
that these two effects would explain the differences in 
FChg and Fmag for He3 while remaining consistent with 
the H3 measurements. We should note that both the He3 

and H3 magnetic moments differ by about 0.2 nucleon 
magneton from the Schmidt values which correspond to 
total orbital angular momentum £ = 0 , and that the 
introduction of a D state increases rather than decreases 
these discrepancies.3 Presumably the meson exchange 
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1 H . Collard and R. Hofstadter, Phys. Rev. 131, 416 (1963). 
H. Collard, R. Hofstadter, A. Johansson, R. Parks, M. Ryneveld, 
A. Walker, M. Yearian, R. Day, and R. Wagner, Phys. Rev. 
Letters 11, 132 (1963). 

2 For entirely symmetric S states we have (Ref. 4) -FchgH3/^chg
He3 

= 2(Fehgp+2Fchg*)/(Fchs
n+2Fchgv) = l, 1.09, and 1.15 for |g2| =0 , 

3, and 5 F~2, respectively. 
3 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 

Company, Inc., Reading, Massachusetts, 1953), Chap. 8, p. 180. 

currents would account for much of the difference in the 
moment although this has not yet been shown explicitly. 

I t is of interest, therefore, to evaluate the form factors 
for both He3 and H3 using a wave function composed of 
both S and D states. Schiff4 has obtained some measure 
of agreement with these experimental quantities, using 
only an admixture of two different 5 states but has 
included all Z)-state contributions in an experimentally 
determined quantity. Here we calculate the contribu­
tions from the D-state component expected to be 
dominant in the wave function. We also include the 
exchange currents, via Sachs' phenomenological model.5 

Although this model has not resolved the question of the 
magnetic moments, it might still give some indication 
of the contributions to the electron-scattering cross 
section. 

I t has been proposed that these cross sections may 
provide a feasible method of obtaining the neutron 
charge form factor. I t will become apparent that, in 
agreement with Schiff, the present data are far too 
insensitive to a neutron charge density to determine it 
with greater accuracy than already realized in other 
experiments. 

In first order, the matrix element describing elastic 
scattering is 

Wl=ie2j>i(l/q2)Jli(q
2). 

Here q2 is the invariant of the four-momentum transfer 
q=ki—kf, q2= —4EiEf sin2 ((9/2), j * is the electron's 
Dirac current, jfi=ufyixUi, while J^q2) is the nuclear 
current for absorption of a photon of momentum q and 
polarization /z. 

Anticipating the energy-momentum conserving delta 
functions in the matrix element 9TT and performing the 
final- and initial-state sums and averages, we obtain the 
cross section following the Rosenbluth formula6 

da/dU=aM(6){a(q2)-(q2/2MT
2)b(q2) tan2(0/2)} , 

where <TM(6) is the Mott cross section 

<TM(B) = 
z2a2 cos2 (6/2) 1 

AEi2 sin4(6/2) l+(2Ei/MT) sin2(6/2) 
4 L. I. Schiff, Phys. Rev. 133, B802 (1964). 
5 R. G. Sachs, Phys. Rev. 74, 433 (1948). 
6 M. N. Rosenbluth, Phys. Rev, 79, 615 (1950). 
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MT is the mass of the target (H3 or He3). In terms of the 
components of /M (q2), a(q2), and b{q2) are given by 

*WMWo>+i<J+-J>, 

z2b(q2)--
2M7 

(J+-J)-
4MT

2 
-(Jo+Jo) 

The symbol ( ) denotes the sums over the target 
ground-state spins. Corrections to a(q2) and b(q2) of 
order q2/MT2 compared to unity have been neglected 
since in the region of interest <?2/Mr2<J0.02. a(q2) and 
b{q2) are related to the electric and magnetic form 
factors of H3 and He3 by 

a(q
2) = {GE2~ {q2/±MT

2)GM
2}/[\- (<?2/4Mr

2)], 

b(q2) = GM
2. 

These form factors are normalized so a(Q) = 1.0, 
b(0) = fji2(A2/z2), with fi the nuclear magnetic moment in 
nucleon magnetons. 

To evaluate a(q2) and b(q2) we expand j^J^iq2) in a 
power series in q/mv via the Foldy-Wouthuysen trans­
formation.7 We retain terms through order q2/mp

2. 

J»J»(q2) 

f 1 

3 I 4mp 

X[jPi*a6iq-r,"+e*q'r'Pi-a] 

4mp 

q2 

-(fis+Tj
zfiv+f2S+rj

zf2v)(rj' (q * ay**"' 

+ — ( f i s + r f f 1 v + 2 f 2 S + 2 r j
z f 2 v ) e i ^ 

Smp
2 

(flS+Tj*f1V+2f2S+2Tj*f2v) 
16m p

2 

XarCpy x ( ^ a - q ) e ^ ^ ~ ^ - r ^ o : - q ) x p ] | ^ > t - . 

The charge and moment structures of the nucleons are 
included in the nucleon form factors / i s , fiv, /2 s, and 
f2v which are normalized so that 

Fl(p>n) = i(fisdbfiv) F2(p,n) = 2(f2Sdtzf2v) , 

( + for p, — for n) 

# 2 = 0 , F i P = l , F i „ = 0 , F2p=Kp, F2n=Kn, 

GE=F1-(q
2/4mp)F2, GM=F1+F2. 

The last term in j^J^ the spin-orbit term, is dropped 
because after doing the spin sums it does not contribute 
to a{q2) to order q2/mp

2 and its correction to b{q2) is 
estimated to be at most 5 % at \q2\ = 5 and less for 

smaller q2 values. Due to the uncertainty in the experi­
mental values of b(q2), this seems justified. 

One expects a major correction to the above inter­
action from the exchange effect. This addition to the 
nucleon current is necessary if for no other reason 
than to preserve gauge invariance. A standard method 
of including this is that of Sachs.6 If the nucleon-
nucleon potential includes a charge exchange operator 
VT{ri3)'zrxj) Sachs shows that an addition to the current 
J of the form 

<iME£ 
i^3 3 

hv—j: 
4mp

2 
{^i^^j)z 

) 

1 K. W. McVoy and L. Van Hove, Phys. Rev. 125,1034 (1962). 

will maintain current conservation. The path over which 
the line integral is taken is arbitrary since only the 
divergence of the operator is fixed. Accordingly, we have 
made the simplest assumption, that the path is a 
straight line connecting r» and ry. We have not investi­
gated how strongly this choice of path affects the 
numerical results. Sachs' method is, in fact, highly 
questionable. Calculations using this method badly 
underestimate the exchange magnetic moments of He3 

and H3, which are quite large. In the absence of other 
tractable exchange-current models, however, we have 
used this in calculating the cross sections to see its 
effect as a function of q2. 

There remains finally the choice of a suitable ground-
state wave function with total spin / = J , isotopic spin 
r = i , and even parity. Construction of three-nucleon 
wave functions with these quantum numbers and 
satisfying the Pauli principle is discussed exhaustively 
by Sachs.3 We have taken the wave function to be of the 
form 

\ps is an S state which is symmetric under interchange 
of the three particles' spatial coordinates. Using Sachs' 
notation 

with ipi™*1 a product of spin and isospin functions giving 
S~ J, T"=J with projections m and t ( = ± J for He3 

and H3) respectively. Ni is the normalization constant 
such that ( ^ s | ^ s ) = l . The coordinates r and 9 are, in 
terms of position vectors of the three particles 

r = r i - r 2 , e=r i—r 3 +r 2 —r 8 , 

R=i(ri+r2+r3), 

and hi is then a scalar function symmetric in ri, r2, and 
r3. \pD is that component of the D state which is expected 
to be dominant,8 i.e., 

8 ̂ 7 is expected to be dominant since it is the only D state with 
a component of two single-particle s orbitals, all others having 
two p or two d single-particle orbitals. 
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where fa™'* is an antisymmetric product of spin, isospin, 
and orbital functions of total orbital angular momentum 
L = 2 , with (\(/D\^D)=1 and ci2+C72=l. Time-reversal 
invariance requires a/cy to be real but its sign is 
undetermined. 

The functions Ai(r,p) and hir^o) determine the main 
features of a{q2) and b{q2). In the next section we shall 
give the results of the calculation for several types of 
functions. 

RESULTS 

Elaborate three-nucleon wave functions have been 
constructed for variational calculations of H 3 and He3 

binding energies.9 These are probably more elaborate 
than is necessary for our purpose. Since we wish to 
calculate only the over-all q2 dependence of the form 
factors, we shall limit ourselves to more tractable forms 
for the radial functions. 

Gaussian: 
hi=(T«*W>, 1 = 1 , 7 . 

Irving functions10: 

e—(ai/2)u 

h^ = , n = 0, 1, 2 
unl2 

with 

^2 = 2 £ ^ 2 = p 2 + 3 f 2 . 
i<3 

The Irving functions have the virtue of the correct be­
havior at large distance. They also are in a sense favored 
by results in the photodisintegration of He3. Berman11 

has measured the photon cross section as a function of 
energy. With a pure S-wave ground state they find that 
the Irving function (n= 2, ai=0.545 F"1) fits their data 
quite well. Gaussian functions, on the other hand, do 
not. Their calculations, however, neglect corrections 
due to final-state rescattering, which can be quite con­
siderable. There is thus no totally compelling reason to 
choose one type of function over the other. We use both 
in evaluating the S-state contribution to the electron 
scattering cross sections. 

There remains the choice of parameters to be used, 
both those for the radial functions and the depth and 
range parameters for the exchange potential. We have 
calculated a(q2) and b{q2) using no exchange current, 
FT = 0, and using the values suggested by low-energy 
n-p scattering12 

9 J. M. Blatt, G. H. Derrick, and J. N. Lyness, Phys. Letters 8, 
323 (1962). 

10 J. Irving, Phil. Mag. 42, 338 (1951). 
1 1B. L. Berman, L. J. Koester, Jr. and J. H. Smith, Phys. Rev. 

133, B117 (1964). See also R. Bosch, J. Lang, R. Miiller, and W. 
WBlfli, Phys. Letters 8, 120 (1964) for results on H3. 

12 P. O. Davey and H. S. Valk, Phys. Letters 7, 155 (1963). 

with *>T = 4 MeV and ds=0.21 F~2. This choice fits low-
energy n-p scattering, and moreover gives good results 
for the He3 electric dipole ordinary and bremsstrahlung 
weighted sum rules. The exchange current matrix 
elements vanish between S states; the leading term 
being the S-D interference. Since this term is quite 
small, we neglect the even smaller D2 term. Finally, for 
the nucleon form factors we have used the equations 
given by Hand, Miller, and Wilson.13 

The results of these calculations are given below, 
along with the experimental points. In comparing them 
one should remember two points. Firstly, none of these 
models gives the correct static magnetic moment. These 
moments are /ZHe3= — 2.127, JUH 3 =2.979, in nucleon 
magnetons. With pure 6* states the calculated moments 
are the neutron and proton moments. If we add a D 
state, the additional moment has the wrong sign to 
account for this difference. 

M(He5) = M ( W ) { l - | C 7
2 [ 2 + ^ ( ^ ) / M W ] } + f c 7 2 , 

M ( f f ) = M ( i> ){ l - | C 7
2 [2+M(«) /M(^) ]}+^ 2 . 

The exchange moment has the right sign, but is much 
too small, /Xex-O.CMjuo. Since b(q2=0) = »2(A2/z2), we 
then cannot obtain the correct absolute value of b as a 
function of q2, and therefore one should compare the 
general shape of this curve with the data, rather than 
the absolute coincidence of the two. The second point 
is that the extrapolated value of the experimental 
points for b to q2—0 appears much larger than /z2 (A 2/z2). 
This probably indicates less reliability of the data at the 
smaller momentum transfers. 

Figures 1 and 2 show the results for a(q2) and b(q2) 
assuming a pure 5 state, for various values of a\ (here 
c7 = 0). As a quantitative comparison the mean-square 
deviations are formed and shown in Table I where we 
have scaled b{q2). 

f r ^ c a l c ( ^ 2 ) - ^ e X p ( ^ 2 ) " ] 2 

aHe3=Zl| 
«*IL aexp(?2) J 

r & c a l c ( g 2 ) ( ^ V A ^ c a l c ( 0 ) ) - ^ x p ( g 2 ) n 2 l 

L b^(q2) J J ' 

ff = aHe 3 +aH 3 . 

The values of a though useful as a guide can be mislead­
ing if one is not careful. This is noted in curve A for H 3 

where the Irving gives quite a good fit to a(q2) but the 
value of a-H3 is due largely to b(q2) which has greater un­
certainty than a(q2), and, of course, is not accurately 
obtained with only an S state. The three types of Irving 
wave functions give very similar plots differing mainly 
in the amount of curvature, with curvature increasing 
as n goes from 0 to 2. This is demonstrated in curves A 
and F. The values of a for n—0 are consistently lower 

13 L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 
35, 335 (1963), Eqs. (47), (48), (51), and (52). 
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FIG. 1. a(q2) and b{q2) versus — q2 for He3 with pure S states. See 
Table I for description of A, F, G, and H. The experimental points 
are those of Collard et al. (Ref. 1). 
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FIG. 2. a(q2) and b(q2) versus — q2 for H3 with pure S states. See 
Table I for description of A, G, and / . The experimental points 
are those of Collard et al. (Ref. 1). 

than for n=l which in turn are lower than for n=2. 
However, for n= 2 the best fit for aHe3 is obtained with 
the parameter which also fits the energy dependence 
of the photo cross section,11 #i=0.545 F_1. Curves G, 
H, and / show the results for Gaussians. These curves 
indicate that reasonable results, differing from each 
other only slightly, can be obtained with either Gaussian 

or Irving functions. Since the Gaussian functions 
involve simpler computations, we have used only these 
in dealing with the S+D wave functions. 

Here we have three parameters to choose, #i, <n, and 
d2 and, in addition, the sign of ci. A lower variational 
binding energy is obtained with a as positive.14 Figures 
3 and 4 show the results for different values of these 

TABLE I. Square deviations of calculated a(q2) and b(q2) from experimental values for various wave functions. Values in parenthesis 
are the lowest possible for the particular wave function considered. Case F also fits the photodisintegration of He3 and H3. Only case 
J f h a s c 7 < 0 . 

Wave 
function 

Irvingo 
Irvingo 
Irvingo 
Irvingi 
Irving2 
Irving2 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 
Gaussian 

tfi 

0.916 F- 1 

0.882 F- 1 

0.95 F- 1 

0.74 F"1 

0.558 F- 1 

0.545 F"1 

0.073 F~2 

0.070 F~2 

0.079 F~2 

0.0705 F~2 

0.0669 F~2 

0.0764 F~2 

0.0705 F-* 
0.071 F-2 
0.073 F~2 

a7 (F-2) 

0.10 
0.0785 
0.0927 
0.10 
0.05 
0.035 

c7
2X102 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1.1 
2.0 
1.45 
1.1 
6 
6 

a 

(1.83) 
2.35 
3.07 

(2.14) 
(2.71) 
3.03 

(1.60) 
2.01 
2.88 
1.28 
1.82 
2.46 

1.32 
1.18 

«He8 

1.28 
(0.923) 
2.85 
1.46 
1.59 

(1.41) 
0.98 

(0.813) 
2.70 
0.621 
0.452 
2.37 

0.60 
0.54 

«H 3 

0.55 
1.42 

(0.22) 
0.679 
1.12 
1.62 
0.626 
1.19 

(0.174) 
0.660 
1.37 
0.090 

0.724 
0.64 

Coulomb energy 
(point nucleons) 

(MeV) 

0.776 
0.746 
0.805 
0.785 
0.789 
0.770 
0.759 
0.734 
0.790 
0.743 
0.723 
0.775 
0.743 
0.729 
0.734 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 

14 J. Schwinger and E. Gerjuoy, Phys. Rev. 61, 138 (1942). 
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0.01 

FIG. 3. a(q2) and b(q2) versus ~q2 for He3 with S-\-D states. See 
Table I for description of / , K, and M. The experimental points 
are those of Collard et al. (Ref. 1). 
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1100.0 

a ( q a ) 
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-q2 ( f - ' ) 

-L 0.1 

FIG. 4. a(q2) and b(q2) versus — q2 for H3 with S+D states. See 
Table I for description of / , K, and M. The experimental points 
are those of Collard et al. (Ref. 1). 

quantities. The values of a± and ci2 were chosen so one 
of the a's were close to a local minimum for fixed a-i. No 
true minimum was found since a continued to de­
crease for 07< 3.5 X 10~2 F~2 which makes (r2)D/(r2)s 

= (5/3)(ai/a7)>3.5. a(q2) depends only weakly on ai 
and C72 because its main contribution comes from GCh2 

and GCh has no SD term. b(q2) is more sensitive to the 
D state, but its greater experimental uncertainty pre­
cludes a final determination of these parameters. 
Finally, the curve M shows the effect of reversing the 
S-D phase. Herein lies the major difference between 
this work and SchifPs. We obtain an interference be­
tween the dominant S state and other components only 
in the magnetic currents, not in the charge. Assuming a 
mixture of two different S states, Schiff obtains this 
interference in both charge and magnetic currents. 

TABLE II. 5-state range parameters for various wave 
functions as given by other authors. 

Reference 

E. M. Henley and 
D. U. L. Yua 

B. L. Berman, et al.h 

R. Bosch et al.h 

A. N. Gorbunov and 
A. T. Varfolomeev0 

C. Rossettid 

L. I. Setoff* 

This work 

i 

(compilation of 
values of other 
workers) 

photodisintegra-
tion of He3 

photodisintegra-
tion of H3 

photodisintegra-
tion of He3 

analysis of elec­
tron scattering 
from He3 and 
H3 uses S+S* 
wave function 

Wave 
"unction ai 

tlG 

hi^ 

hi<» 

/M2) 

hrw 
UG 
hi*® 

ha 

hi") 
hi<n 

0.065 

0.545 

0.545 

0.71 

0.475 

0.966 
0.0738 
0.898 

0.073 
0.916 
0.74 
0.558 

fits peak 
position 

fits peak 
height 

a E. M. Henley and D. U. L. Yu, Phys. Rev. 133, B1444 (1964). 
b See Ref. 9. 
c A. N. Gorbunov and A. T. Varfolomeev, Phys. Letters 5, 149 (1963). 
<* C. Rossetti, Nuovo Cimento 14, 1171 (1959). 
«• See Ref. 3. 

The net effect of the exchange current here is quite 
small. With the well depth and range given above, the 
fractional increase in b(q2) over that with v=0 is at 
most 4%. For He3 in case J its contribution to GM varies 
as e~°'196q2 versus e~°-444«2 for the other terms, indicating 
the exchange moment is spatially more compact than 
that due to the spins. 

Finally, we have also computed the cross sections with 
the neutron charge form factor equal to zero for all q2. 
a(q2) and b(q2) are affected at most by 1%. 

CONCLUSIONS 

The first rather obvious conclusion is that these 
measurements cannot give information about the neu­
tron charge form factor, unless their accuracy is con-
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siderably improved by perhaps an order of magnitude. 
Even then, the theoretical uncertainties are much too 
great at present. It would be necessary to develop some 
reliable method of generating an isotopic vector current 
which accounts correctly for the magnetic moment. The 
method used thus far, that of Sachs', gives a result for 
this in the right direction but an order of magnitude 
too small. This is the most unreliable facet of any cal­
culation of these nuclear form factors. With the provi­
sion that Sach's method of including this exchange cur­
rent is reasonable, some conclusions may be drawn 
about the nuclear wave functions. From the curves 
above, it is possible to fit well the shape of the cross sec­
tions for He3 and H3 separately with a mixture of S and 
D states. These fits, however, are not good if the same 
parameters are chosen for each nucleus, the falloff dis­
tance in H3 being considerably smaller than in He3. It is 
doubtful whether the Coulomb repulsion between pro-

INTRODUCTION 

THE excited states of deformed nuclei near the 
boundaries of the deformed regions have been the 

subject of intensive experimental investigation in recent 
years. This has come about as a natural extension of the 
success of the Bohr-Mottelson description1 of highly 
deformed nuclei, in order to understand more clearly 
the relationship between the collective states of spher­
ical and deformed nuclei. The stable isotopes of samar­
ium (Z— 62) are very appropriate for such a study since 
they extend from the N=S2 closed neutron shell to 
1ST =92 which is well into the region of deformation 
beyond N—89. Here we are concerned with the two 

f This work was performed at the Florida State University as 
part of a Ph.D. dissertation (R.A.K.) under a U. S. Atomic Energy 
Commission grant. Operation of the F. S. U. Tandem Accelerator 
Laboratory is supported in part by the U. S. Air Force Office of 
Scientific Research. 

* Present address: Department of Physics and Astrophysics, 
University of Colorado, Boulder, Colorado. 

1 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 27, No. 16 (1953). 

tons giving a Coulomb energy on 0.764 MeV could ac-
j count for this; using the wave function from curve J 
s the Coulomb energy for point nucleons is 0.743 MeV. 
t The value for extended nucleons is expected to be 0.669 
2 to 0.600 MeV or 10-20% less on the basis of calculations 
r done by Ohmura and Ohmura.15 Thus, while a purely 
3 symmetric S state is ruled out by the differences in Fchg 

and î mag for He3, neither can a mixture of S and D states 
give these form factors correctly for both nuclei, with 
the same parameters. The differences in finite sizes 

l effects between proton and neutron accounts partially 
3 for this difference, but only for about half of it. 

Finally, Table II summarizes the best values of the 
1 parameters from these curves, and contrasts them with 
i the corresponding quantities found by Schiff and with 

those found in other types of experiments. 

15 H. Ohmura and T. Ohmura, Phys Rev. 128, 729 (1962). 

deformed even isotopes Sm152 and Sm164. Further results 
concerning the odd isotopes of samarium will be forth­
coming in a later paper. 

While the low-lying levels of Sm152 are relatively 
well studied2-8 through the decay of Eu152 and of 
Eu152m, only Coulomb excitation data9~12 have been 
previously available for states in Sm164 above the 2+ 

2 J. M. Cork, M. K. Brice, R. G. Helmer, and D. E. Sarason, 
Phys. Rev. 107, 1621 (1957). 

3 0 . Nathan and M. A. Waggoner, Nucl. Phys. 2, 548 (1957). 
4 B. V. Bobykin and K. M. Novik, Izv. Akad. Nauk SSSR, Ser. 

Fiz. 21, 1556 (1957). 
5 O. Nathan and S. Hultberg, Nucl. Phys. 10, 118 (1959). 
«L. Grodzins and H. Kendall, Bull. Am. Phys. Soc. 1, 163 

(1956). 
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Low-Lying Collective States of Sm152 and Sm154f 
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The excited states up to 2 MeV in Sm162 and Sm154 have been studied by magnetic analysis of the inelastic 
protons from thin targets bombarded by a 12-MeV proton beam from the Florida State University tandem 
Van de Graaff accelerator. The results are compared with previous studies and with the predictions of col­
lective nuclear models. The ground-state band levels up to spin 6 are excited in these experiments. The 2 + , 
3 + , and 4 + states in the gamma vibrational band, the 0 + and 2 + states in the beta vibrational band, and 
the 1 —, 3 —, and 5 — states in the octupole band have been observed in Sm152. In Sm164 the gamma band head 
is observed at 1443 keV and the octupole band head is observed at 927 keV. Additional levels in these bands 
and the beta band are suggested. Several other levels are observed above 1100 keV in these nuclei. 


